¿ÞÂÊ ¸Þ´º ŸÀÌƲ À̹ÌÁö
¿¬±¸µ¿Çâ

Home < ¿­¸°¸¶´ç < ¿¬±¸µ¿Çâ

       ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ ¿¬±¸ÀÇ µ¿Çâ ¹× Àû¿ë
       kimsg7596@kaist.ac.kr        
       ±èÈñÅà ¹Ú»ç        2015.12.30 17:32        11247
´Ù¿î·Îµå : ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ ¿¬±¸ÀÇ µ¿Çâ ¹× Àû¿ë_±èÈñÅà ¹Ú»ç_.pdf(560 Kb)
 

                                                 ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ ¿¬±¸ÀÇ µ¿Çâ ¹× Àû¿ë


                                                                                                                         Çѱ¹È­Çבּ¸¿ø ±èÈñÅÃ, ¼ÛÀ籤 ¹Ú»ç


1.°³¿ä
ÀÚ°¡Á¶¸³(self-assembly)´Â °¢°¢ÀÇ ¼ººÐµéÀÌ ÀÚ¹ßÀûÀ¸·Î ºñ°øÀ¯ °áÇÕ¿¡ ÀÇÇØ ÀÏÁ¤ÇÑ ±¸Á¶¸¦ ÀÌ·ç´Â °ÍÀÌ´Ù. ºÐÀÚÀû ¼öÁØÀÇ ÀÚ°¡Á¶¸³Àº ÀÚ¹ßÀûÀÎ °áÇÕ¿¡ ÀÇÇØ ¾ÈÁ¤ÀûÀÌ°í ±ÔÄ¢ÀûÀÎ ±¸Á¶¸¦ °®µµ·Ï ÇÏ´Â ´ÜÀ§Ã¼(building block)À» µðÀÚÀÎ ÇÏ´Â °ÍÀ» ¸»ÇÑ´Ù (Adler-Abramovicha et al., 2014). »ý¹° ½Ã½ºÅÛ¿¡¼­µµ ÀÚ°¡Á¶¸³ Çö»óÀ» ã¾Æ º¼ ¼ö Àִµ¥, ´ºÅ¬·¹¿ÀŸÀ̵å, ´Ü¹éÁú, Áö¹æ µîÀÇ ºÐÀÚµéÀ» building blockÀ¸·Î ÇÑ actic filament, ¹ÙÀÌ·¯½º, Å©·Î¸¶Æ¾ µîÀÇ ÀÚ°¡Á¶¸³ º¹ÇÕüµéÀÌ ´ëÇ¥ÀûÀÌ´Ù. ÀÚ°¡Á¶¸³Àº ÀϹÝÀûÀÎ È­ÇйÝÀÀ°ú´Â ¹ÝÀÀ ÁøÇ༺°ú »óÈ£ÀÛ¿ë¿¡¼­ ´Ù¸¥ Ư¼ºÀ» º¸ÀδÙ. ħÀü°ú °°Àº È­ÇÐ ¹ÝÀÀ°ú ´Ù¸¥ Ư¼ºÀ» °®´Âµ¥, ÀÏ¹Ý È­ÇйÝÀÀÀº ¹«Áú¼­µµ°¡ ³ô¾ÆÁö´Â ¹æÇâÀ¸·Î ¹ÝÀÀÀÌ ÁøÇàµÇÁö¸¸, ÀÚ°¡Á¶¸³ÀÇ °æ¿ì¿¡´Â ÀÚ¹ßÀûÀ¸·Î ƯÁ¤¹æÇâÀ¸·Î Á¤ÇüÈ­µÈ ÇüÅ·Π¹ÝÀÀÀÌ ÀϾ´Ù. ¶ÇÇÑ ÀÚ°¡Á¶¸³Àº °øÀ¯°áÇÕ°ú °°ÀÌ °­ÇÑ °áÇÕ¿¡ ÀÇÇؼ­°¡ ¾Æ´Ï¶ó ¼ö¼Ò°áÇÕ, À̿°áÇÕ, van der Waals °áÇÕ µî ºñ±³Àû ¾àÇÑ °áÇÕµéÀÇ ÁýÇÕÀû ÀÛ¿ë¿¡ ÀÇÇØ ¾ÈÁ¤µÈ ±¸Á¶¸¦ Çü¼ºÇϴ Ư¼ºÀ» °®´Â´Ù. ¶ÇÇÑ ÀÚ°¡Á¶¸³ÀÇ ´ëÇ¥ÀûÀÎ ¿¹·Î block copolymer, DNA ±â¹Ý ±¸Á¶Ã¼, lipid bilayer, ÄÝ·ÎÀÌµå µîÀÇ ´Ù¾çÇÑ ÇüŸ¦ °®´Â º¹ÇÕü°¡ ÀÖÀ¸¸ç, ÀǾà, ÀΰøÃ˸Šµî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëÀÌ °¡´ÉÇÏ´Ù.

2. ÀÚ°¡ Á¶¸³Çü ´Ü¹éÁú º¹ÇÕüÀÇ Çü¼º
ÆéŸÀÌµå ±â¹Ý ÀÚ°¡Á¶¸³¿¡ ÀÇÇØ ´Ù¾çÇÑ ÇüÅÂÀÇ ÀÚ°¡Á¶¸³ º¹ÇÕü°¡ Çü¼ºµÉ ¼ö Àִµ¥, coiled coil, peptide amphiphiles, cyclic peptide µîÀ» ÀÌ¿ëÇÏ¿© ³ª³ëÆ©ºê/ÆÄÀ̹ö, ±¸Çü ¿î¹Ýü µîÀÇ ÇüÅÂÀÇ ±¸Á¶Ã¼¸¦ Çü¼ºÇÑ´Ù (Stephanopoulosa et al., 2013). 1) ±¸Çü ¿î¹Ýü ±¸Á¶ÀÇ º¹ÇÕü´Â ±Ø¼º/¹«±Ø¼º ¶Ç´Â »ê¼º/¾ËÄ®¸®¼º ¾Æ¹Ì³ë»êÀÇ diblock polypeptide°¡ »ê¼º/Áß¼º/¾ËÄ®¸®¼º ¼ö¿ë¾×»ó¿¡¼­ ±¸¼º ¾Æ¹Ì³ë»êÀÇ ¹°¼º º¯È­°¡ À¯¹ßµÇ°í hydrophoic interaction¿¡ ±¸Çü º¹ÇÕü¸¦ ÀÌ·ç´Â °ÍÀÌ´Ù. ´ëÇ¥ÀûÀ¸·Î poly-L-glutamic acid(PGA)¿Í poly-L-lysin(PL)°¡ pH¿¡ µû¶ó¼­ »ê¼º¿¡¼­´Â PGA°£ÀÇ °áÇÕ, ¾ËÄ®¸® ¿ë¾×¿¡¼­´Â PL°£ÀÇ hydrophobic interaction¿¡ ÀÇÇØ ±¸Çü º¹ÇÕü¸¦ ÀÌ·ç´Â °ÍÀÌ´Ù (Bellomo et al., 2004). ±× ¿Ü proline-rich peptide¿Í cylic peptide¿¡ ÀÇÇؼ­ ÀÚ°¡Á¶¸³¿¡ ÀÇÇØ ±¸Çü º¹ÇÕü°¡ Çü¼ºµÈ´Ù. 2) cyclic ÆéŸÀ̵å´Â D-¾Æ¹Ì³ë»ê°ú L-¾Æ¹Ì³ë»êÀÌ ¹Ýº¹ÀûÀÎ °áÇÕ¿¡ ÀÇÇØ »ý¼ºµÈ ¦¼ö°³ÀÇ ÆéŸÀ̵å·Î, À̸¦ ÀÌ¿ëÇÏ¿© ³ª³ëÆ©ºê ±¸Á¶Ã¼¸¦ ¸¸µé ¼ö ÀÖ´Ù (Mandal et al., 2013). ±¸Á¶Ã¼´Â ÆéŸÀ̵åµéÀÌ ¼öÁ÷À¸·Î ½×À̸鼭 Çü¼ºµÇ¸ç Çü¼º °úÁ¤¿¡¼­ ÆéŸÀ̵鰣ÀÇ ¼ö¼Ò°áÇÕ¿¡ ÀÇÇØ ¾ÈÁ¤ÀûÀÎ ±¸Á¶¸¦ ÀÌ·é´Ù. 3) ¾ç±Ø¼º ÆéŸÀ̵å´Â ¹«±Ø¼º Àܱâµé·Î ÀÌ·ç¾îÁø ¼Ò¼ö¼º ²¿¸®¿Í Ä£¼ö¼º ¸Ó¸®·Î ÀÌ·ç¾îÁ® ÁöÁúÀ̳ª °è¸éÈ°¼ºÁ¦ÀÇ Æ¯¼ºÀ» °®°í ÀÖ´Â ÆéŸÀ̵å·Î¼­ ³ª³ëÆ©ºê³ª ³ª³ëÆÄÀ̹ö À¯»ç ±¸Á¶¸¦ ÀÚ°¡Á¶¸³À¸·Î Çü¼ºÇÑ´Ù (Santoso et al., 2002). bilayer¸¦ Çü¼ºÇÏ´Â °ÍÀº ÁöÁúÀÇ °æ¿ì¿Í À¯»çÇÏÁö¸¸, ±¸¼º ÆéŸÀ̵åÀÇ °ñ°ÝµéÀÌ ¼ö¼Ò°áÇÕÀ» ÀÌ·é´Ù´Â Á¡¿¡¼­ ´Ù¸¥ Ư¼ºÀ» º¸ÀδÙ. 4) coliled coil ÆéŸÀ̵å´Â ³ª¼±ÇüÀÇ ÆéŸÀ̵å·Î ÆéŸÀÌµå ³»ÀÇ hydrophobic ¾Æ¹Ì³ë»ê°£ÀÇ ÀÛ¿ëÀ¸·Î ÀÚ°¡Á¶¸³À» ÀÏÀ¸Å²´Ù. ÀüÇüÀûÀ¸·Î hydrophobic ¾Æ¹Ì³ë»ê(h)¿Í charged ¾Æ¹Ì³ë»ê(C)·Î ±¸¼ºµÈ heptamer(hxxhcxc)°¡ ¹Ýº¹ÀûÀ¸·Î ±¸Á¶¸¦ ÀÌ·ç´Â ¾ËÆÄ-Ç︯½º ±¸Á¶¸¦ °®´Â´Ù (Holowka et al., 2005). ±¸¼º ¾Æ¹Ì³ë»ê¿¡ µû¶ó dimer, trimer µî ´Ù¾çÇÑ ÇüÅÂÀÇ ÀÚ°¡Á¶¸³À» ÀÌ·é´Ù.

 

               

                     ±×¸² 1. ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ÀÇ Çü¼º (adapted from Yan et al., 2010)

 

3. ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ÀÇ Àû¿ë
ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼´Â ÆéŸÀ̵å/´Ü¹éÁúÀÇ º»·¡ÀÇ Æ¯¼ºÀ» ÁõÁø½ÃÅ°°Å³ª »õ·Î¿î ¿ëµµÀÇ ±â´É¼º ¹°ÁúÀ» ¸¸µé±â À§ÇØ ÇʼöÀûÀÎ ±â¼úÀÌ´Ù. ´Ù¾çÇÑ ÀÚ°¡ Á¶¸³ ÆéŸÀ̵åÀÌ º¸°íµÇ¾ú°í À̸¦ ÀÌ¿ëÇÑ Àû¿ë ºÐ¾ßµµ Áö¼ÓÀûÀ¸·Î º¸°íµÇ°í ÀÖÀ¸¸é º¸°­Á¦, ¾à¹°Àü´ÞÁ¦, ¿¡³ÊÁö ÀúÀå ÀåÄ¡ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ´Ù.


3.1 Ç׹̻ý¹° Á¦Á¦
Ç׹̻ý¹° Á¦Á¦·Îµµ »ç¿ëµÉ ¼ö Àִµ¥, 90³âµµ ÃÊ¹Ý ÆéŸÀÌµå ±â¹Ý ³ª³ë Æ©ºê¸¦ ÀÌ¿ëÇÑ Ç׹̻ý¹° Á¦Á¦°¡ °³¹ßµÇ¾ú´Ù. ³ª¹æ µî ´Ù¾çÇÑ °ïÃæÀÌ »ý»êÇÏ´Â CecropinÀ¸·Î ¹Ì»ý¹°ÀÇ ¼¼Æ÷º®¿¡ nano-scaleÀÇ channelÀ» ¸¸µé°í ÀÌ·Î ÀÎÇÑ »ïÅõ¾Ð ¼Õ»óÀ¸·Î ¹Ì»ý¹°À» »ç¸ê½ÃÅ°´Â ¹æ¹ýÀÌ´Ù (Wang et al., 2015).


3.2 Metal-organic framework(MOF)¸¦ ÀÌ¿ëÇÑ »ýÈ­ÇÐ ¸ðÅÍ
MOF´Â ±Ý¼ÓÀ̿°ú À¯±â ¸®°£µå·Î ÀÌ·ç¾îÁø ´Ù°ø¼º ³ª³ë ±¸Á¶Ã¼·Î ¼ö¼Ò¿Í ÀÌ»êȭź¼Ò µî ±âüÀÇ Á¦°Å/ÀúÀå/Á¤Á¦¿¡ »ç¿ëµÇ°Å³ª ÃÖ±ÙÀÇ º¸°í¿Í °°ÀÌ »ýÈ­ÇÐ ¸ðÅÍ¿¡µµ Àû¿ëÇÒ ¼ö ÀÖ´Ù. »ýÈ­ÇÐ ¸ðÅÍÀÇ °æ¿ì water/MOF¿¡¼­ ÆéŸÀ̵尡 ÀÚ°¡ Á¶¸³µÇ´Â Ư¼ºÀ» ÀÌ¿ëÇÏ¿´´Ù. ¹«±Ø¼º ÆéŸÀ̵åÀÇ À籸¼º¿¡ ÀÇÇØ MOFÀÇ Ç¥¸éÀå·Â ±¸¹è°¡ »ý¼ºµÇ°í ±× ÈûÀÌ ¿îµ¿¿¡³ÊÁö·Î ÀüȯµÇ´Â Çö»óÀ» ÀÌ¿ëÇÑ °ÍÀÌ´Ù. MOFÀÇ ¿îµ¿¼ºÀÇ Á¶ÀýÀº »ç¿ëµÈ ¼ö¿ë¾×ÀÇ pH µîÀ¸·Î Á¶Àý °¡´ÉÇÏ¿© ÇâÈÄ osmotic pumping device¿Í micro-actuator µî¿¡µµ Àû¿ë °¡´ÉÇÏ´Ù (Ikezoe et al., 2012).


3.3 Medicine
ÆéŸÀÌµå ±â¹Ý ÀÚ°¡Á¶¸³¿¡ ÀÇÇØ drug delivery¿¡ Àû¿ëÇÒ ¼ö Àִµ¥, ÀÌ´Â ±âÁ¸ÀÇ ½Ã½ºÅÛÀÇ ¹®Á¦Á¡, ¿¹ÄÁ´ë, inorganic nanostructure°¡ °®´Â ÀáÀçÀû À§Çؼº, liposome±â¹Ý ½Ã½ºÅÛÀÌ °®´Â ³·Àº ¾à¹° Àü´Þ·Â, ºÒ¾ÈÁ¤¼º ¹× À¯È¿¼ººÐÀÇ leachingµîÀÇ ¹®Á¦Á¡µéÀÇ ´ë¾ÈÀ¸·Î ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ÀÌ °¢±¤¹Þ°í ÀÖ´Ù. ÆéŸÀÌµå ±â¹Ý drug delivery ½Ã½ºÅÛÀº »ýüÀûÇÕÇÑ Æ¯¼ºÀ» °®À¸¸ç, ½±°í °£´ÜÇÏ°Ô ÇÕ¼ºÇÒ ¼ö ÀÖ´Â ÀåÁ¡À» °®À¸¸ç ´Ù¾çÇÑ À¯È¿¼ººÐÀ» È¿°úÀûÀ¸·Î Àü´Þ/Á¶ÀýÇÒ ¼ö ÀÖ´Â ÀåÁ¡À» °®´Â´Ù (Wang et al., 2014). ¶ÇÇÑ ¾Ï¼¼Æ÷ µîÀÇ ¿¬±¸¿¡¼­ ¼¼Æ÷ ¹è¾ç¿ë ¸ÞÆ®¸¯½º·Îµµ Àû¿ëÀÌ °¡´ÉÇѵ¥, ÃÖ±Ù ÆéŸÀÌµå ±â¹Ý ³ª³ë¼¶À¯Çü hydrogel¸¦ ÀÌ¿ëÇÏ¿© ´Ù¾çÇÑ ¼¼Æ÷ÀÇ ºÐÈ­¸¦ ÃËÁø½ÃÅ°°í ¼¼Æ÷ÀÇ 3D¼ºÀå¿¡ È¿°úÀûÀ̶ó´Â ¿¬±¸ °á°úµéÀÌ º¸°íµÇ¾úÀ¸¸ç ÃÖ±Ù¿¡´Â ªÀº ±æÀÌÀÇ ÆéŸÀ̵带 ÅëÇÑ Áö´ÉÇü Àΰø ±¸Á¶Ã¼ °³¹ß¿¡ ´ëÇÑ ¿¬±¸°¡ º¸°íµÇ¾ú´Ù (Worthington et al. 2015).


3.4 Light harvesting
ÆéŸÀ̵å¿Í chromophoreÀÇ º¹ÇÕü¸¦ ÀÌ¿ëÇÏ¿© ÀÚ¿¬ÀûÀÎ light harvesting complex(LHC)¸¦ ¸ð¹æÇÏ¿© ¿¡³ÊÁöÀÇ ÀúÀå¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Ù. light harvestingÀº light capture¿Í energy transfer·Î ÀÌ·ç¾îÁ® ÀÖÀ¸¸ç light capture ´Ü°èÀÇ È¿À²ÀÌ Àüü ½Ã½ºÅÛÀÇ È¿À²À» °áÁ¤ÇÑ´Ù. È¿À²ÀûÀÎ light capture¸¦ À§Çؼ­´Â ÆéŸÀ̵å¿Í »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ °áÁ¤µÇ´Â chromophoreÀÇ ¼¼¹ÐÇÏ°Ô ¹èÇâÀÌ ÇʼöÀûÀÌ´Ù. ÇöÀç±îÁö ÀÚ¿¬°èÀÇ LHC¿Í ´ëµîÇÑ È¿À²À» °¡Áø chromopore/peptide ÀÚ°¡Á¶¸³ ±¸Á¶Ã¼´Â ¾øÁö¸¸, ºñ°øÀ¯°áÇÕÀ» ÀÌ¿ëÇÑ ÀÚ°¡ Á¶¸³ ¹æ¹ýÀº chromopore/peptideÀÇ ±¸Á¶Àû À¯¿¬¼ºÀ» Á¦½ÃÇÒ ¼ö Àֱ⿡ ÇâÈÄ º¸´Ù È¿À²ÀûÀÎ ±¸Á¶Ã¼¸¦ Á¦°øÇÒ ¼ö ÀÖÀ¸¸ç, ´õ¿íÀÌ º¹¼öÀÇ chromopore¸¦ µ¿½Ã¿¡ ÀÚ°¡ Á¶¸³ÇÏ´Â ¹æ¹ýÀÇ °³¹ßÀ» ÅëÇØ È¿À²¼ºÀÌ ¹è°¡µÈ ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµÈ´Ù.

   

             

 

           ±×¸² 2. ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ÀÇ ´Ù¾çÇÑ Àû¿ë °¡´É ºÐ¾ß (adapted from Adler-Abramovicha et al., 2014)

 

3. °á·Ð
ÆéŸÀ̵å¿Í ´Ü¹éÁúÀ» Æ÷ÇÔÇÏ´Â ¹ÙÀÌ¿À ±â¹Ý Àç·á¸¦ ÀÌ¿ëÇÑ ³ª³ë ±¸Á¶Ã¼ÀÇ °³¹ßÀº ±× Àû¿ë ¹üÀ§°¡ ¹Ì»ý¹°ºÎÅÍ Àΰ£±îÁö ´Ù¾çÇÑ ¹üÀ§·Î Àû¿ë °¡´ÉÇϸç, ƯÈ÷ ´Ù¾çÇÑ Å©±âÀÇ ±¸Á¶¸¦ Á¤¹ÐÇÏ°Ô ¸¸µé ¼ö ÀÖ¾î »ê¾÷ÀûÀÎ È°¿ëµµ ³ô´Ù. ÇâÈÄ, Á» ´õ ¼¼¹ÐÇÏ°Ô Á¶Àý °¡´ÉÇÑ ½Ã½ºÅÛÀÇ ±¸Ãà ¹× ´ÙÁß ÀÚ°¡ Á¶¸³ÀÇ °³¹ßÀ» ÅëÇØ º»·¡ÀÇ µ¶Æ¯ÇÑ È­ÇÐÀû/¹°¸®Àû Ư¼ºÀ» °­È­½ÃÄÑ È¿¿ë¼ºÀ» Áõ´ë½ÃÅ°°Å³ª ´Ù¾çÇÑ ±â´ÉÀ» °®´Â ½Ã½ºÅÛÀ» ±¸ÃàÇÏ¸é »ê¾÷ÀûÀÎ Àû¿ë ¿ëÀ̼ºÀÌ Ä¿Áú °ÍÀ¸·Î »ý°¢ÇÑ´Ù.

 

Âü°í¹®Çå
1. Adler-Abramovicha L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev, 43, 6881-6893
2. Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Materials, 3, 244-248
3. Holowka EP, Pochan DJ, Deming TJ (2005) Charged Polypeptide Vesicles with Controllable Diameter. J Am Chem Soc, 127, 12423-12428
4. Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H (2012) Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater, 11, 1081-1085
5. Mandal D, Tiwari RK, Shirazi AN, Oh D, Ye G, Banerjee A, Yadav A, Parang K (2013) Self-assembled surfactant cyclic peptide nanostructures as stabilizing agents. Soft Matter, 9, 9465-9475
6. Santoso S, Hwang W, Hartman H, Zhang S (2002) Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to Form Nanotubes and Nanovesicles. Nano Lett, 2, 687-691
7. Stephanopoulosa N, Ortonya JH, Samuel IS (2013) Self-assembly for the synthesis of functional biomaterials. Acta Mater, 61, 912-930
8. Wang Q, Zhang X, Zheng J, Liu D (2014) Self-assembled peptide nanotubes as potential nanocarriers for drug delivery. RSC Adv, 4, 25461-25469
9. Wang Q, Wei S, Wu J, Zou X, Sieggreen O, Liu Y, Xi C, Brooks CL, Chen Z (2015) Interfacial Behaviors of Antimicrobial Peptide Cecropin P1 Immobilized on Different Self-Assembled Monolayers. J Phys Chems C, in press
10. Worthington P, Pochan DJ, Langhans SA (2015) Peptide Hydrogels - Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front Oncol, 5, 92
11. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev, 39, 1877-1890
12. Zou Q, Liu K, Abbas M, Yan X (2015) Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics. Adv Mater, in progress




Total:118 page:(8/4)
70 Á¤º¸ ±èÇå½Ä ÀÚ¿¬»ìÇؼ¼Æ÷¿Í Ç׾ϸ鿪ġ·á ¿¬±¸µ¿Çâ 16.08.03 10289
69 Á¤º¸ ¼ÛÀ籤 ÀÚ¿¬ÀÇ ÇÕ¼º Àü·«À» ½ÇÇè½Ç·Î ¿Å°Ü¿Â È¿¼Ò ¿¬¼Ó´Ü.. 16.07.19 7827
68 Á¤º¸ Àü»ó¿ë ¾Ï Ä¡·á¿ë Ç¥ÀûÇü ³ª³ë¾à¹°Àü´Þ½Ã½ºÅÛÀÇ °³¹ß µ¿.. 16.07.19 18001
67 Á¤º¸ ÀÌÁö¿À Àΰø ´Ü¹éÁú ³ª³ë±¸Á¶Ã¼ ÃֽŠ¿¬±¸µ¿Çâ 16.04.12 8886
66 Á¤º¸ À̴뿱 Let-7 miRNA biogenesis 16.03.31 11273
65 Á¤º¸ Á¤¿øÀÏ Class III ADH È°¼º¾ïÁ¦¸¦ ÅëÇÑ °£¼¶À¯È­ Ä¡·á±â.. 16.03.31 11807
64 Á¤º¸ ±è¹Ì¿µ ¾ÏÀüÀÌ Ä¡·áÁ¦ °³¹ßÀ» À§ÇÑ ÃֽŠ¿¬±¸ µ¿Çâ 16.03.18 8765
63 Á¤º¸ À±¿µ°É ¹ÌÅäÄܵ帮¾Æ DNA ÇÕ¼º»ý¹°ÇÐ ¿¬±¸ µ¿Çâ 16.03.07 10462
62 Á¤º¸ ÇÑ°©ÈÆ Áø±Õ¿¡¼­ ¹ß°ßµÈ »õ·Î¿î ±â´ÉÀÇ ¸ÞÆ¿ÀüÀÌÈ¿¼Òµé°ú.. 16.01.07 12063
61 Á¤º¸ ÀÌÇö¼ö È¿¼Ò¸¦ ÀÌ¿ëÇÑ Ãµ¿¬¹° À¯µµÃ¼ÀÇ ±Û¸®ÄÚ½ÇÈ­ 16.01.07 12741
60 Á¤º¸ ¹æµÎÈñ ÇÕ¼º »ý¹°ÇÐ ¿¬±¸¸¦ À§ÇÑ ±â¹Ý ±â¼ú·Î¼­ÀÇ ´Ü¼¼Æ÷.. 16.01.07 13847
59 Á¤º¸ ±è±ÙÁß À¯ÀüÀÚ ¹ßÇö°ú °ü·ÃµÈ »õ·Î¿î ³í¸®¿Í ÇÕ¼º»ý¹°ÇÐ.. 15.12.30 16689
58 Á¤º¸ ±èÈñÅà ÆéŸÀÌµå ±â¹Ý ÀÚ°¡ Á¶¸³ ±¸Á¶Ã¼ ¿¬±¸ÀÇ µ¿Çâ ¹× .. 15.12.30 11248
57 Á¤º¸ ±èÁöÇö ½Ã½ºÅÛ»ý¹°ÇÐÀÇ ÇÕ¼º»ý¹°ÇÐ Àû¿ë ¿¬±¸µ¿Çâ 15.09.10 20926
56 Á¤º¸ ±èµ¿¸³ ¹Ì»ý¹°À» ÀÌ¿ëÇÑ È­Çй°Áú »ý»ê ¿¬±¸µ¿Çâ 15.09.02 12381
55 Á¤º¸ ÀÌÁ¤°É »ýÃ˸ÅÀÇ ¾÷±×·¹À̵ùÀ» À§ÇÑ °íÁ¤È­ ¿¬±¸ µ¿Çâ 15.08.21 16212
[1] [2] [3] [4] [5] [6] [7] [8]